Rapamycin induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin.
نویسندگان
چکیده
BACKGROUND Rapamycin is an immunosuppressive agent with antiproliferative properties against not only lymphocytes but also vascular endothelial and smooth muscle cells, and it reduces the fibroproliferative response to vascular injury. Heme oxygenase-1 (HO-1) has also been shown to have graft protective effects and to inhibit vascular remodeling. In this study, we evaluated whether there is an interaction between rapamycin and HO-1. METHODS AND RESULTS In human pulmonary artery endothelial or smooth muscle cells, HO-1 expression was evaluated in response to rapamycin or wortmannin, an inhibitor of the upstream modulator of mammalian target of rapamycin (mTOR) PI-3K. We also evaluated whether the inhibitory actions of rapamycin on platelet-derived growth factor-dependent proliferation was mediated by HO using the chemical inhibitor tin protoporphyrin. Rapamycin induced HO-1 expression in both pulmonary endothelial and smooth muscle cells, whereas no to little increase was seen in response to another immunosuppressive agent, cyclosporin A. HO-1 expression was also increased in response to wortmannin, suggesting that the PI-3K-mTOR pathway is required for this induction. Inhibition of HO activity resulted in a loss of the antiproliferative activity of rapamycin in growth factor-stimulated smooth muscle cells. CONCLUSIONS The induction of HO-1 expression by rapamycin and, more importantly, the effects of tin protoporphyrin, an inhibitor of HO activity, on the antiproliferative actions of rapamycin suggest that the effects of rapamycin may be, at least in part, modulated by its actions on HO-1.
منابع مشابه
Induction of Heme Oxygenase -1 By Lipocalin 2 Mediated By Nf-Kb Transcription Factor
Purpose: Effect of lipocalin 2 on the expression of heme oxygenase I , II and NF-kB transcription factor was the purpose of this survey. Materials and Methods: Lcn2 was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant vector was transfected to CHO and HEK293T to establish stable cell expressing lipocalin 2. The presence of lipocalin 2 gene in these cells was confi...
متن کاملHomocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کاملنقش سیستم هم اکسیژناژ بر روی رشد تومور ملانوما در موش های نژاد C57Bl6
Background and Objective: Some evidence about the relationship between heme oxygenase and many cancers is available. Heme oxygenase has anti-apoptotic effects and contributes to tumor growth. The aim of this study was to evaluate the effect of heme oxygenase on melanoma tumor cells mitosis and tumor size in C57BL/6 mice. Materials and Methods: B16F10 melanoma cells were injected subcutaneously ...
متن کاملInhibition of mTOR attenuates store-operated Ca2+ entry in cells from endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension.
Pulmonary vascular remodeling occurs in patients with chronic thromboembolic pulmonary hypertension (CTEPH). One factor contributing to this vascular wall thickening is the proliferation of pulmonary artery smooth muscle cells (PASMC). Store-operated Ca(2+) entry (SOCE) and cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in PASMC are known to be important in cell proliferation and vascular ...
متن کاملHeme Oxygenase-2 Gene Mutations and Blood Bilirubin Level in Iranian Patients with Premature Atherosclerosis
Heme oxygenase-2 (HO-2) is a critical antioxidative stress enzyme found in endothelial cells and adventitialnerves. This enzyme in conjunction with other HOs (1 and 3) metabolize heme molecule into ferrous iron,carbon monoxide (CO), and biliverdin which is further converted to bilirubin. Both biliverdin and bilirubin arepotent antioxidants, reducing the risk of atherosclerosis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 107 6 شماره
صفحات -
تاریخ انتشار 2003